2^B3^C: 2 Box 3 Crop of Facial Image for Gender Classification with Convolutional Networks
نویسنده
چکیده
In this paper, we tackle the classification of gender in facial images with deep learning. Our convolutional neural networks (CNN) use the VGG-16 architecture [1] and are pretrained on ImageNet for image classification. Our proposed method (2^B3^C) first detects the face in the facial image, increases the margin of a detected face by 50%, cropping the face with two boxes three crop schemes (Left, Middle, and Right crop) and extracts the CNN predictions on the cropped schemes. The CNNs of our method is fine-tuned on the Adience and LFW with gender annotations. We show the effectiveness of our method by achieving 90.8% classification on Adience and achieving competitive 95.3% classification accuracy on LFW dataset. In addition, to check the true ability of our method, our gender classification system has a frame rate of 7-10 fps (frames per seconds) on a GPU considering real-time scenarios.
منابع مشابه
VEGAC: Visual Saliency-based Age, Gender, and Facial Expression Classification Using Convolutional Neural Networks
This paper explores the use of Visual Saliency to Classify Age, Gender and Facial Expression for Facial Images. For multi-task classification, we propose our method VEGAC, which is based on Visual Saliency. Using the Deep Multi-level Network [1] and off-the-shelf face detector [2], our proposed method first detects the face in the test image and extracts the CNN predictions on the cropped face....
متن کاملA Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images
Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...
متن کاملLearning Document Image Features With SqueezeNet Convolutional Neural Network
The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...
متن کاملIntroducing a method for extracting features from facial images based on applying transformations to features obtained from convolutional neural networks
In pattern recognition, features are denoting some measurable characteristics of an observed phenomenon and feature extraction is the procedure of measuring these characteristics. A set of features can be expressed by a feature vector which is used as the input data of a system. An efficient feature extraction method can improve the performance of a machine learning system such as face recognit...
متن کاملWeighted Heterogeneous Learning for Deep Convolutional Neural Network Based Facial Image Analysis
Recognition of facial attributes such as facial point, gender, and age has been used in marketing strategies and social networking services. Marketing strategies recommend the goods, that are supposed to matches the needs of potential clients. Various social networking services based on facial recognition techniques have recently been developed that can estimate age from a facial image with a h...
متن کامل